Credal Model Averaging: dealing robustly with model uncertainty on small data sets
نویسنده
چکیده
Datasets of population dynamics are typically characterized by a short temporal extension. In this condition, several alternative models typically achieve close accuracy, though returning quite different predictions (model uncertainty ). Bayesian model averaging (BMA) addresses this issue by averaging the prediction of the different models, using as weights the posterior probability of the models. However, an open problem of BMA is the choice of the prior probability of the models, which can largely impact on the inferences, especially when data are scarce. We present Credal Model Averaging (CMA), which addresses this problem by simultaneously considering a set of prior probability distributions over the models. This allows to represent very weak prior knowledge about the appropriateness of the different models and also to easily accommodate expert judgments, considering that in many cases the expert is not willing to commit himself to a single prior probability distribution. The predictions generated by CMA are intervals whose lengths shows the sensitivity of the predictions on the choice of the prior over the models.
منابع مشابه
Credal Model Averaging for classification: representing prior ignorance and expert opinions
Bayesian model averaging (BMA) is the state of the art approach for overcoming model uncertainty. Yet, especially on small data sets, the results yielded by BMA might be sensitive to the prior over the models. Credal Model Averaging (CMA) addresses this problem by substituting the single prior over the models by a set of priors (credal set). Such approach solves the problem of how to choose the...
متن کاملA Data Envelopment Analysis Model with Triangular Intuitionistic Fuzzy Numbers
DEA (Data Envelopment Analysis) is a technique for evaluating the relative effectiveness of decision-making units (DMU) with multiple inputs and outputs data based on non-parametric modeling using mathematical programming (including linear programming, multi-parameter programming, stochastic programming, etc.). The classical DEA methods are developed to handle the information in the form of cri...
متن کاملCredal Model Averaging: An Extension of Bayesian Model Averaging to Imprecise Probabilities
We deal with the arbitrariness in the choice of the prior over the models in Bayesian model averaging (BMA), by modelling prior knowledge by a set of priors (i.e., a prior credal set). We consider Dash and Cooper’s BMA applied to naive Bayesian networks, replacing the single prior over the naive models by a credal set; this models a condition close to prior ignorance about the models, which lea...
متن کاملUpper entropy of credal sets. Applications to credal classification
We present an application of the measure of entropy for credal sets: as a branching criterion for constructing classification trees based on imprecise probabilities which are determined with the imprecise Dirichlet model. We also justify the use of upper entropy as a global uncertainty measure for credal sets and present a deduction of this measure. We have carried out several experiments in wh...
متن کاملA Multi-Criteria Analysis Model under an Interval Type-2 Fuzzy Environment with an Application to Production Project Decision Problems
Using Multi-Criteria Decision-Making (MCDM) to solve complicated decisions often includes uncertainty, which could be tackled by utilizing the fuzzy sets theory. Type-2 fuzzy sets consider more uncertainty than type-1 fuzzy sets. These fuzzy sets provide more degrees of freedom to illustrate the uncertainty and fuzziness in real-world production projects. In this paper, a new multi-criteria ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012